103 research outputs found

    The largest reservoir of mitochondrial introns is a relic of an ancestral split gene

    Get PDF
    In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms (ref. 1-4). Large introns (0.1 to 5 kbp) are frequent in mitochondrial genomes of plant and fungi (ref. 1,5) but scarce in Metazoa, despite these organisms are grouped with fungi among Opisthokonts. Introns are classified in two main groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism (ref. 5,6). Most of the group I introns carry a "Homing Endonuclease Gene" (ref. 7-9) encoding a DNA endonuclease acting in the transfer and site specific integration "homing") and allowing the intron spreading and gain after lateral transfer even between species from different kingdoms (ref. 10,11). Opposite to this "late intron" paradigm, the "early intron" theory indicates that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss (ref. 12,13).

Here we report the sequence of the cox1 gene of the button mushroom _Agaricus bisporus_, the most worldwide cultivated mushroom. This gene is both the longest mitochondrial gene (29,902 nt) and the largest Group I intron reservoir reported to date. An analysis of the group I introns available in _cox1_ genes shows that they are ancestral mobile genetic elements, whose frequent events of loss (according to the "late theory") and gain by lateral transfer ("early theory") must be combined to explain their wide and patchy distribution extending on several kingdoms. This allows the conciliation of the "early" and "late intron" paradigms, which are still matters of much debate (ref. 14,15). The overview of the intron distribution indicates that they evolve towards elimination. In such a landscape of eroded and lost intron sequences, the _A. bisporus_ largest intron reservoir, by its singular dynamics of intron keeping and catching, constitutes the most fitted relic of an early split gene

    The Agaricus bisporus cox1 Gene: The Longest Mitochondrial Gene and the Largest Reservoir of Mitochondrial Group I Introns

    Get PDF
    In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a “Homing Endonuclease Gene” (heg) encoding a DNA endonuclease acting in transfer and site-specific integration (“homing”) and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote

    Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent

    No full text
    This is an author manuscript that has been accepted for publication in International Journal of Systematic and Evolutionary Microbiology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in International Journal of Systematic and Evolutionary Microbiology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of 'Fair Use of Copyrighted Materials' (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://mic.sgmjournals.org, and is freely available without a subscription.International audienceA novel strictly anaerobic, thermophilic, sulfur-reducing bacterium, designated PH1209(T), was isolated from an East Pacific Rise hydrothermal vent (1 degrees N) sample and studied using a polyphasic taxonomic approach. Cells were Gram-negative, motile rods (approx. 1.60 x 0.40 microm) with a single polar flagellum. Strain PH1209(T) grew at temperatures between 33 and 65 degrees C (optimum 60 degrees C), from pH 5.0 to 8.0 (optimum 6.0-6.5), and between 2 and 4 % (w/v) NaCl (optimum 3 %). Cells grew chemolithoautotrophically with H(2) as an energy source, S(0) as an electron acceptor and CO(2) as a carbon source. Strain PH1209(T) was also able to use peptone and yeast extract as carbon sources. The G+C content of the genomic DNA was 35 mol%. Phylogenetic analyses based on 16S rRNA gene sequencing showed that strain PH1209(T) fell within the order Nautiliales, in the class Epsilonproteobacteria. Comparative 16S rRNA gene sequence analysis indicated that strain PH1209(T) belonged to the genus Nautilia and shared 97.2 and 98.7 % 16S rRNA gene sequence identity, respectively, with the type strains of Nautilia lithotrophica and Nautilia profundicola. It is proposed, from the polyphasic evidence, that the strain represents a novel species, Nautilia abyssi sp. nov.; the type strain is PH1209(T) (=DSM 21157(T)=JCM 15390(T))

    Recherche de nouvelles methodes de multiplication conforme in vitro chez l'artichaut (Gynara scolymus L.)

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Prospections pour la recherche d'Agaricus bisporus en France : contexte historique et scientifique. Premiers resultats

    No full text
    National audienc

    Champignon de Paris

    No full text
    National audienc

    Genetique du champignon de Paris : congres de Vancouver et publications recentes

    No full text
    National audienc

    Organisation infraspécifique et modes de reproduction chez les agarics

    No full text
    National audienc
    • …
    corecore